Abstract
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant wheat varieties.
Highlights
Aegilops tauschii is the D genome progenitor of hexaploid bread wheat
Homology-based in silico miRNA prediction from a total of 1,477,789 chromosome-specific sequence reads of A. tauschii 5D chromosome suggested the presence of 3,055 pre-miRNA sequences, of which 2,601 were unique, along the 5D chromosome, putatively coding for 58 different miRNA families (Tables 1 and 2)
Repeat masking of the pre-miRNA sequences revealed that 91.38% of the total length of all putative stem–loops contained repetitive elements
Summary
Aegilops tauschii (goat grass) is the D genome progenitor of hexaploid bread wheat. About 8,000 years ago, its spontaneous hybridization with the cultivated allotetraploid Triticum turgidum in the Fertile Crescent resulted in an allohexaploid, currently known as Triticum aestivum (bread wheat; Brenchley et al, 2012). Bread wheat, being the major staple food in the world, occupies 17% of all the cultivated land and meets nearly 20% of the human dietary energy supply (Lucas and Budak, 2012). The allohexaploid nature of its genome challenges genetics and genomics research on bread wheat. The genome sequencing of its A and D genome progenitors, Triticum urartu and A. tauschii, has delivered important insight into wheat genome structure, organization and evolution, and provided a valuable resource for the wheat community, both for further genomics research and improvement (Jia et al, 2013; Ling et al, 2013)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have