Abstract
Copper oxide nanoparticles (CuONPs) have been widely used in the industrial and pharmaceutical fields; however, their toxicity profile is deeply concerning. Currently, nanomaterials-induced toxicity in the cardiovascular system is receiving increased attention. Our previous toxicological study found that lysosomal deposition of CuONPs triggered vascular endothelial cell death, indicating that the involvement of autophagic dysfunction was crucial for CuONPs-induced toxicity in human umbilical vein endothelial cells (HUVECs). In the current study, we investigated the detailed mechanism underlying the autophagic dysfunction induced by CuONPs. We demonstrated that CuONPs exposure caused accumulation of superoxide anions, which likely resulted from mitochondrial dysfunctions. MnTBAP, a superoxide anions scavenger, alleviated CuONPs-induced HUVECs death, indicating that excessive superoxide anions were directly related to the CuONPs cytotoxicity in HUVECs. Interestingly, we found that mitophagy (a protective mechanism for clearance of damaged mitochondria and excessive superoxide anions) was initiated but failed to be cleared in CuONPs-treated cells, resulting in the accumulation of damaged mitochondria. Inhibition of mitophagy through Atg5 knockout or blocking of mitochondria fission with Mdivi-1 significantly aggravated CuONPs-induced superoxide anions accumulation and cell death, suggesting that mitophagy is a protective mechanism against CuONPs cytotoxicity in HUVECs. In summary, we demonstrate that superoxide anions (originating from damaged mitochondria) are involved in CuONPs-associated toxicity and that impaired mitophagic flux aggravates the accumulation of excessive superoxide anions, which leads to HUVECs death. Our findings indicate that there are crucial roles for superoxide anions and mitophagy in CuONPs-induced toxicity in vascular endothelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.