Abstract

Platinum-based complexes are one of the most successful chemotherapeutic agents having a significant ground in cancer chemotherapy despite their side effects. During the past few decades, Ru(II) complexes have been emerging as efficient alternatives owing to their promising activities against platinum-resistant cancer. The pathway of action, lipophilicity, and cytotoxicity of a Pt or Ru complex may be tuned by varying the attached ligands, the coordination mode, and the leaving group. In this work, we report a family of Pt(II) and Ru(II) complexes (1-5) of three N,O and N,N donor-based trimethoxyanilines containing Schiff bases with the general formula [PtII(L)(DMSO)Cl], [RuII(L)(p-cymene)Cl], [RuII(L)(p-cymene)Cl]+, and [PtII(L)Cl2]. All of the complexes are characterized by different analytical techniques. 1H NMR and electrospray ionization mass spectrometry (ESI-MS) data suggest that the N,O-coordinated Pt(II) complexes undergo slower aquation compared to the Ru(II) analogues. The change of the coordination mode to N,N causes the Ru complexes to be more inert to aquation. The N,O-coordinating complexes show superiority over N,N-coordinating complexes by displaying excellent in vitro antiproliferative activity against different aggressive cancer cells, viz., triple-negative human metastatic breast adenocarcinoma MDA-MB-231, human pancreatic carcinoma MIA PaCa-2, and hepatocellular carcinoma Hep G2. In vitro cytotoxicity studies suggest that Pt(II) complexes are more effective than their corresponding Ru(II) analogues, and the most cytotoxic complex 3 is 10-15 times more toxic than the clinical drugs cisplatin and oxaliplatin against MDA-MB-231 cells. Cellular studies show that all of the N,O-coordinated complexes (1-3) initiate disruption of the microtubule network in MDA-MB-231 cells in a dose-dependent manner within 6 h of incubation and finally lead to the arrest of the cell cycle in the G2/M phase and render apoptotic cell death. The disruption of the microtubule network affects the agility of the cytoskeleton rendering inhibition of tyrosine phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a key step in angiogenesis. Complexes 1 and 2 inhibit VEGFR2 phosphorylation in a dose-dependent fashion. Among the Pt(II) and Ru(II) complexes, the former displays higher cytotoxicity, a stronger effect on the cytoskeleton, better VEGFR2 inhibition, and strong interaction with the model nucleobase 9-ethylguanine (9-EtG).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.