Abstract

Morbidity and mortality in schistosomiasis are largely due to an immune response mediated by CD4 T lymphocytes. Since lymphocyte activation is shaped by costimulatory signals, the specific functions of different costimulatory pathways are of increasing interest. We now examined the role of the inducible costimulatory molecule (ICOS) and its ligand B7-related protein 1 (B7RP-1) in the experimental murine schistosome infection by blocking this costimulatory pathway with monoclonal antibody against ICOS, administered daily by intraperitoneal injection during the patent phase of the disease. The treated mice exhibited enhanced hepatic immunopathology characterized by enlarged egg granulomas and pronounced parenchymal inflammation with hepatocellular necrosis, resulting in elevated liver enzyme levels in serum. Most strikingly, there was a sharp increase in gamma interferon (IFN-gamma) production by schistosome egg antigen-stimulated granuloma cells, bulk mesenteric lymph node (MLN) cells, and purified MLN CD4 T cells, which contrasted with a more discreet change in the Th2-type cytokines interleukin 4 (IL-4) and IL-10. These findings suggest that the ICOS-B7RP-1 costimulatory pathway serves primarily to control IFN-gamma production, thereby promoting a cytokine environment conducive to limited hepatic damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call