Abstract
Although the slit diaphragm proteins in podocytes are uniquely organized to maintain glomerular filtration assembly and function, little is known about the underlying mechanisms that participate in trafficking these proteins to the correct location for development and homeostasis. Identifying these mechanisms will likely provide novel targets for therapeutic intervention to preserve podocyte function following glomerular injury. Analysis of structural variation in cases of human nephrotic syndrome identified rare heterozygous deletions of EXOC4 in two patients. This suggested that disruption of the highly-conserved eight-protein exocyst trafficking complex could have a role in podocyte dysfunction. Indeed, mRNA profiling of injured podocytes identified significant exocyst down-regulation. To test the hypothesis that the exocyst is centrally involved in podocyte development/function, we generated homozygous podocyte-specific Exoc5 (a central exocyst component that interacts with Exoc4) knockout mice that showed massive proteinuria and died within 4 weeks of birth. Histological and ultrastructural analysis of these mice showed severe glomerular defects with increased fibrosis, proteinaceous casts, effaced podocytes, and loss of the slit diaphragm. Immunofluorescence analysis revealed that Neph1 and Nephrin, major slit diaphragm constituents, were mislocalized and/or lost. mRNA profiling of Exoc5 knockdown podocytes showed that vesicular trafficking was the most affected cellular event. Mapping of signaling pathways and Western blot analysis revealed significant up-regulation of the mitogen-activated protein kinase and transforming growth factor-β pathways in Exoc5 knockdown podocytes and in the glomeruli of podocyte-specific Exoc5 KO mice. Based on these data, we propose that exocyst-based mechanisms regulate Neph1 and Nephrin signaling and trafficking, and thus podocyte development and function.
Highlights
The slit diaphragm proteins in podocytes are uniquely organized to maintain glomerular filtration assembly and function, little is known about the underlying mechanisms that participate in trafficking these proteins to the correct location for development and homeostasis
To test the hypothesis that the exocyst is centrally involved in podocyte development/function, we generated homozygous podocytespecific Exoc5 knockout mice that showed massive proteinuria and died within 4 weeks of birth
We propose that exocyst-based mechanisms regulate Neph1 and Nephrin signaling and trafficking, and podocyte development and function
Summary
The slit diaphragm proteins in podocytes are uniquely organized to maintain glomerular filtration assembly and function, little is known about the underlying mechanisms that participate in trafficking these proteins to the correct location for development and homeostasis. Analysis of structural variation in cases of human nephrotic syndrome identified rare heterozygous deletions of EXOC4 in two patients This suggested that disruption of the highly-conserved eight-protein exocyst trafficking complex could have a role in podocyte dysfunction. Tor- pathways in Exoc knockdown podocytes and in the glomeruli of podocyte-specific Exoc KO mice Based on these data, we propose that exocyst-based mechanisms regulate Neph and Nephrin signaling and trafficking, and podocyte development and function. Exocyst complex members were shown to be mutated in families with diseases that can affect the kidney, such as Joubert syndrome [17]; the role of the exocyst complex in podocyte biology has not been investigated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.