Abstract

Hereditary spastic paraplegia (HSP) is a category of neurodegenerative illnesses with significant clinical and genetic heterogeneity. Homozygous truncated variants of the ERLIN2 gene lead to HSP18 (MIM #611225). However, it is still unclear whether there is an autosomal dominant pathogenic pattern. The specific molecular mechanism needs to be investigated. We generated patient-derived iPSC models to study the mechanism of ERLIN2 heterogeneous variants leading to HSP. We identified a heterozygous missense variant p.Val71Ala of ERLIN2 in an HSP family. Based on IP-mass spectrometry, we found that the ERLIN2 heterozygous missense variant protein recruited the ubiquitin E3 ligase RNF213 to degrade IP3R1. The degradation of IP3R1 leads to the reduction of intracellular free calcium, which triggered endoplasmic reticulum (ER) stress-mediated apoptosis. Calcium homeostasis imbalance inhibited the MAPK signaling pathway that contributed to decreased cell proliferation. In summary, these results suggest that the autosomal dominant inheritance of heterozygous missense variants in ERLIN2 is a novel pathogenic mode of HSP. Furthermore, the disruption of intracellular calcium homeostasis is the pathological mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.