Abstract

Chlorophenols in the aquatic environment have been of concern due to their potential effects on human and wildlife. In the present study, the endocrine disrupting effects of 2,4-dichlorophenol (2,4-DCP) were investigated in vitro and in vivo. In the in vitro assay, H295R human adrenocortical carcinoma cells were used to determine the potential effects of 2,4-DCP on steroidogenesis. Exposure to 0, 0.1, 0.3 or 1.0 mg 2,4-DCP/L resulted in less production of 17β-estradiol (E2) and alterations in transcript expressions of genes involved in steroidogenesis, including cytochrome P450 ( CYP11A, CYP17, CYP19), 3βHSD, 17βHSD and StAR. In the in vivo study, effects of 0, 0.03, 0.1 or 0.3 mg 2,4-DCP/L on concentrations of steroid hormones in plasma of adult zebrafish ( Danio rerio) were measured and expression of mRNA of selected genes in hypothalamic-pituitary-gonadal (HPG) axis and liver were determined. Exposure of zebrafish to 2,4-DCP resulted in lesser concentrations of E2 accompanied by down-regulation of CYP19A mRNA in the females. In males, exposure to 2,4-DCP resulted in greater concentrations of testosterone (T) and E2 along with greater mRNA expression of CYP17 and CYP19A. The mRNA expression of prostaglandin synthase ( Ptgs2) gene, which regulates ovulation, was down-regulated in females, but up-regulated in males. The hepatic estrogenic receptor ( ERα and ERβ) and vitellogenin ( VTG1 and VTG3) mRNAs were up-regulated in both females and males. The average number of eggs spawned was significantly less upon exposure to 2,4-DCP. Exposure of adult zebrafish to 2,4-DCP resulted in lesser rates of hatching of eggs. The results demonstrated that 2,4-DCP modulates transcription of steroidogenetic genes in both H295R cells and in the zebrafish HPG-axis and disrupts steroidogenesis, which in turn, can cause adverse effects on reproduction in fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.