Abstract

Measuring the concentrations of steroid hormones in plasma is critical for understanding their role in various vital physiological processes. The detection of underivatized steroid hormones in biofluids through mass spectrometry (MS) is typically hindered by low ionization efficiency. We described a novel matrix-assisted laser desorption/ionization-MS (MALDI-MS) approach based on hydroxylamine derivatization (HA-D) to analyze low-concentration steroid hormones in plasma. The ketonic carbonyl group containing steroid hormones could be derivatized using HA to form oxime derivatives, which considerably enhanced the MS sensitivity for detecting steroid hormones. By using the optimized conditions, estrone (E1), testosterone (T), and progesterone (Prog), could be simultaneously quantified in plasma with a limit of detection (LOD) from 0.019 to 0.031 nM, recoveries from 86% to 108%, and coefficient of variation (CV%) from 4.59% to 11.90%. HA-D/MALDI-MS exhibited higher sensitivity than those using Girard T (GT). To establish potential utility of our method, we characterized fatty liver patient plasmas to demonstrate that the HA-D/MALDI-MS procedure could generate quantitative results comparable to the current clinical liquid chromatography-electrospray ionization tandem MS (LC-ESI MS/MS) method. This approach facilitates the rapid and accurate characterization of plasma hormones, and renders the MALDI-MS approach for steroid hormones more adaptable for clinical research and use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call