Abstract

We study the thermally driven spin state transition in a two-orbital Hubbard model with crystal-field splitting, which provides a minimal description of the physics of LaCoO(3). We employ the dynamical mean-field theory with a quantum Monte Carlo impurity solver. At intermediate temperatures we find a spin disproportionated phase characterized by a checkerboard order of sites with small and large spin moments. The high temperature transition from the disproportionated to a homogeneous phase is accompanied by a vanishing of the charge gap. With the increasing crystal-field splitting the temperature range of the disproportionated phase shrinks and eventually disappears completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.