Abstract

Three disposable stochastic sensors designed using nanolayer deposition of copper (Cu), graphene (GR), and copper-graphene (Cu-GR) composite on the silk textile, as substrate, were modified with chitosan (n=371-744), for biomedical analysis. Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) served as model analytes for molecular recognition and quantification in biological samples such as whole blood and brain tumor tissue samples. The best sensitivities (3.77×107s μg mL-1 for IDH1, and 1.88×107s μg mL-1 for IDH2) and the lowest limits of quantification (10-2fg mL-1 for IDH1, and 5×10-2fg mL-1 for IDH2) for both IDH1 and IDH2 were recorded for the disposable stochastic sensors based on chitosan/graphene nanolayer. Very good correlations between the screening method based on disposable stochastic sensors and enzyme-linked immunosorbent assay (ELISA) were obtained; this was also proved by the results obtained using the paired t-test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call