Abstract

ABSTRACTA new sensitive and selective disposable potentiometric sensor based on polypyrrole (PPy) films for determination of sildenafil citrate (SC) was proposed. The pyrrole polymerization was performed in presence of citrate ions under galvanostatic conditions which resulted in a membrane of PPy doped with citrate anion at graphite pencil electrode surface. Experimental conditions (e.g., pH and conditioning time) and instrumental parameters (e.g., current density and electrical charge) were evaluated in order to reach the best potentiometric response for the proposed sensor. Under optimized conditions, the device presented a linear dynamic range (LDR) for citrate ions concentrations varying from 0.034 to 1.7 mmol L−1 with a Nernstian slope of 57.2 mV dec−1 and a limit of detection (LOD) of 30 µmol L−1. The developed potentiometric sensor was applied for sildenafil citrate (SC) determination (pharmaceutical formulations) and results compared with an official spectrophotometric method indicating a good agreement for a confidence level of 95%. Effect of concomitants species on the potentiometric response of the proposed device and morphologic characterization using microscopy of atomic force (AFM) were realized. The surface roughness of PPy films (synthesized in citrate solution and chloride) showed poorly affected by changing the doping anion, probably because the polypyrrole nodules grow three‐dimensionally simultaneously. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43762.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.