Abstract

The development of solid biomaterials has rapidly progressed in recent years in applications in bionanotechnology. The immobilization of proteins, such as enzymes, within protein crystals is being used to develop solid catalysts and functionalized materials. However, an efficient method for encapsulating protein assemblies has not yet been established. This work presents a novel approach to displaying protein cages onto a crystalline protein scaffold using in-cell protein crystal engineering. The polyhedra crystal (PhC) scaffold, which displays a ferritin cage, was produced by coexpression of polyhedrin monomer (PhM) and H1-ferritin (H1-Fr) monomer in Escherichia coli. The H1-tag is derived from the H1-helix of PhM. Our technique represents a unique strategy for immobilizing protein assemblies onto in-cell protein crystals and is expected to contribute to various applications in bionanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call