Abstract

The application of scattered light via an antenna-reactor configuration is promising for converting thermocatalysts into photocatalysts. However, the efficiency of dielectric antennas in photon-to-chemical conversion remains suboptimal. Herein, we present an effective approach to promote light utilization efficiency by designing dielectric antenna-hybrid bilayered reactors. Experimental studies and finite-difference time-domain simulations demonstrate that the engineered SiO2-carbon/metal dielectric antenna-hybrid bilayered reactors exhibit a synergy of absorption superposition and electric field confinement between carbon and metals, leading to the improved absorption of scattered light, upgraded charge carriers density, and ultimately promoted photoactivity in hydrogenating chlorobenzene with an average benzene formation rate of 18 258 μmol g-1 h-1, outperforming the reported results. Notably, the carbon interlayer proves to be more effective than the commonly explored dielectric TiO2 interlayer in boosting the benzene formation rate by over 3 times. This research paves the way for promoting near-field scattered photon-to-chemical conversion through a dielectric antenna-hybrid reactor configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.