Abstract

This study presents a displacement-based design procedure for seismic retrofitting of steel frames using buckling-restrained braces (BRB) to meet a given target displacement in the framework of the capacity spectrum method. The seismic performance of a six-storey steel frame equipped with BRB is investigated. Different storey-wise BRB distribution methods are proposed and the influence on the results of the design procedure is analyzed. Nonlinear dynamic analyses demonstrate the efficacy of the design procedure showing the improvements achieved by the retrofitting intervention using BRB. The maximum top displacement registered for the retrofitted frame under earthquake excitation coincides with the target displacement obtained in accordance with the design procedure. The introduction of buckling-restrained braces enhances the earthquake resistance of the steel frame, providing significant energy dissipation and the stiffness needed to satisfy structural drift limits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call