Abstract

Deviations between the design and actual shafting occur due to limitations in ship construction accuracy. Consequently, accurately obtaining the relationship between the actual shafting load and displacement relationship based on the design shafting becomes challenging, leading to inaccurate solutions for bearing displacement values and low alignment efficiency. In this research article, to address the issue of incomplete actual shafting data, a transfer learning-based method is proposed for accurate calculation of bearing displacement values. By combining simulated data from the design shafting with measured data generated during the adjustment process of the actual shafting, higher accuracy can be achieved in calculating bearing displacement values. This research utilizes a certain shafting as an example to carry out the application of the bearing displacement value calculation method. The results show that even under the action of shafting deviation, the actual shafting load and displacement relationship model can become more and more accurate with the shafting adjustment process, and the accuracy of bearing displacement values calculation becomes higher and higher. This method contributes to obtaining precise shafting adjustment schemes, thereby enhancing alignment quality and efficiency of ship shafting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call