Abstract

An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.