Abstract
The stick–slip phenomenon is commonly found at structural connections in steel buildings. It is a major damping mechanism in a structure with bolted joints and makes a significant contribution to the total structural damping. This article reviews the stick–slip damping model of an elastic single-degree-of-freedom system with one stick–slip component. It is observed that the damping ratios of the system with the stick–slip mechanism first quickly increase when experiencing a very small displacement and then slowly decrease. After the number of activated slip surfaces is assumed to be a linear function related to the structural displacement, the equivalent damping ratios of a structural system with numerous stick–slip components are derived. However, this displacement-dependent damping model is very difficult to be used for a structural dynamic analysis due to its inherent complexity. Therefore, a new displacement-dependent damping model for a structural dynamic analysis is proposed based on the viscous damping. A high-rise steel moment resisting frame with bolted joints subjected to an earthquake ground motion is taken as an example to verify the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.