Abstract

In this study, we fabricated vertical Schottky barrier diodes (SBDs) based on wide bandgap semiconductor beta-phase gallium oxide (β-Ga2O3) and silicon carbide (SiC), respectively, and conducted proton irradiation experiments to analyze the radiation hardness of the SBDs comparatively. The effects of proton radiation on the performance of SBDs were assessed through measurements of forward current, capacitance, and breakdown characteristics. Both devices exhibited degradation in current and capacitance characteristics following proton irradiation, attributed to displacement damage (DD). Notably, the β-Ga2O3-based SBD demonstrated more pronounced deterioration compared to the SiC-based device despite similar vacancy distributions as confirmed by SRIM simulation. Moreover, a decrease in contact radius correlated with exacerbated degradation in the current characteristics of the β-Ga2O3-based SBD. Following proton irradiation, breakdown voltages of both devices increased due to elevated resistance induced by displacement damage. While both β-Ga2O3 and SiC-based SBDs experienced displacement damage under high fluence proton irradiation, the extent of performance degradation varied depending on the dimensions and quality of epitaxial and substrate layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.