Abstract

High-voltage vacuum insulator failure is generally due to surface flashover rather than insulator bulk breakdown. Vacuum surface flashover is widely believed to be initiated by a secondary electron emission avalanche along the vacuum-insulator interface. This process requires a physical mechanism to cause secondary electrons emitted from the insulator surface to return to that surface. Here, it is shown that when an insulator is subjected to a fast high-voltage pulse, the magnetic field due to displacement current through the insulator can provide this mechanism. This indicates the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call