Abstract
We develop a theory of integrable dispersive deformations of 2+1 dimensional Hamiltonian systems of hydrodynamic type following the scheme proposed by Dubrovin and his collaborators in 1+1 dimensions. Our results show that the multi-dimensional situation is far more rigid, and generic Hamiltonians are not deformable. As an illustration we discuss a particular class of two-component Hamiltonian systems, establishing the triviality of first order deformations and classifying Hamiltonians possessing nontrivial deformations of the second order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.