Abstract
We present a dispersive-coupling-based interpretation for the quantum Zeno effect (QZE) where measurements are dynamically treated as dispersive couplings of the measured system to the apparatus rather than the von Neumann's projections. It is found that the explicit dependence of the survival probability on the decoherence time quantitatively distinguishes this dynamic QZE from the usual one based on projection measurements. By revisiting the cavity-QED experiment of the QZE [J. Bernu et al., Phys. Rev. Lett. 101, 180402 (2008)], we suggest an alternative scheme to verify our theoretical consideration that frequent measurements slow down the increase of photon number inside a microcavity due to the nondemolition couplings with the atoms in large detuning.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have