Abstract

The relentless pursuit of band structure engineering continues to be a fundamental aspect in solid-state research. Here, we meticulously construct an artificial kagome potential to generate and control multiple Dirac bands of graphene. This unique high-order potential harbors natural multiperiodic components, enabling the reconstruction of band structures through different potential contributions. As a result, the band components, each characterized by distinct dispersions, shift in energy at different velocities in response to the variation of artificial potential. Thereby, we observe a significant spectral weight redistribution of the multiple Dirac peaks. Furthermore, the magnetic field can effectively weaken the superlattice effect and reactivate the intrinsic Dirac band. Overall, we achieve actively dispersion-selective band engineering, a functionality that would substantially increase the freedom in band design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.