Abstract
In this study, we focused on the 3D dispersion of colloids. To our knowledge, we were the first to do so. Thereto, we injected silica encapsulated DNA tagged superparamagnetic particles (SiDNAmag) in a homogeneous coarse grain sand tank. At four downstream locations, SiDNAmag concentrations were determined as a function of time. Longitudinal and transverse dispersivity values and associated uncertainties of SiDNAmag were determined using Monte Carlo modelling approach. The parameter associated uncertainties of hydraulic conductivity as well as of the effective porosity estimated from SiDNAmag breakthrough curves were statistically similar to those estimated from salt tracer breakthrough curves. Further, the SiDNAmag dispersivity uncertainty ranges were then statistically compared with the salt tracer (NaCl, and fluorescein) dispersivities. Our results indicated that time to rise, time of peak concentration and shape of the breakthrough curves of SiDNAmag were similar to those of the salt tracer breakthrough curves. Despite the size difference between the salt tracer molecules and SiDNAmag, size exclusion did not occur, probably due to the large pore throat diameter to SiDNAmag diameter ratio. The median longitudinal dispersivity (αL) of salt tracer and SiDNAmag were 4.9 and 5.8 × 10−4 m, respectively. The median ratio of horizontal and vertical transverse dispersivities to αL, (αTH /αL and αTV /αL, respectively), for salt tracer and SiDNAmag ranged between 0.52 and 0.56. Through the statistical tests, we concluded that the longitudinal and traverse dispersivities of SiDNAmag were not statistically significantly different from salt tracer in 3 dimensions and could be used to characterize the dispersive properties of the medium we used. Our work contributes to a better understanding of 3D dispersion of SiDNAmag in saturated porous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.