Abstract

We address the dispersion properties of overdamped Brownian particles migrating in a two-dimensional acoustophoretic microchannel, where a pressure-driven axial Stokes flow coexists with a transverse acoustophoretic potential. Depending on the number and symmetries of the stable nodal points of the acoustophoretic force with respect to the axial velocity profile, different convection-enhanced dispersion regimes can be observed. Among these regimes, an anomalous scaling, for which the axial dispersion increases exponentially with the particle Peclét number, is observed whenever two or more stable acoustophoretic nodes are associated with different axial velocities. A theoretical explanation of this regime is derived, based on exact moment homogenization. Attention is also focused on transient dispersion, which can exhibit superballistic behavior 〈(x-〈x〉)^{2}〉∼t^{3},x being the axial coordinate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.