Abstract

Multi-wall carbon nanotubes (MWCNTs) exhibit exceptional mechanical and electrical properties and can be used to improve the mechanical and piezoelectric properties of cement-based materials. In the present study, the effect of different MWCNT concentrations as well as different types of surfactants and a superplasticizer were examined to reinforce, at the nanoscale, a white cement mortar typically used for the restoration of monuments of cultural heritage. It was shown that sodium dodecylbenzenesulfonate (SDBS) and Triton X-100 surfactants slightly decreased the white cement mortars’ electrical resistivity (by an average of 10%), however, the mechanical properties were essentially decreased by an average of 60%. The most suitable dispersion agent for the MWCNTs proved to be the superplasticizer Ceresit CC198, and its optimal concentration was investigated for different MWCNT concentrations. Carboxylation of the MWCNT surface with nitric acid did not improve the mechanical performance of the white cement nanocomposites. The parametric experimental study showed that the optimum combination of 0.8 wt% of cement superplasticizer and 0.2 wt% of cement MWCNTs resulted in a 60% decrease in the electrical resistivity; additionally, the flexural and compressive strengths were both increased by approximately 25% and 10%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.