Abstract
We consider the Liouville equation associated to a metric g and we prove dispersion and Strichartz estimates for the solution of this equation in terms of the geometry of the trajectories associated to g. In particular, we obtain global Strichartz estimates in time for metrics where dispersion estimate is false even locally in time. We also study the analogy between Strichartz estimates obtained for the Liouville equation and the Schrödinger equation with variable coefficients. To cite this article: D. Salort, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have