Abstract

A full investigation of the low-order guided modes in a two-dimensional (2D) hollow metallic waveguide is performed. The dispersion characteristics of the 2D hollow metallic waveguides are identified and analyzed. Manipulating the dispersion is proposed by either changing the geometrical shapes from rectangular to trapezoidal waveguide or changing the material of the cladding region to TiN. The dispersion analysis of the 2D plasmonic waveguide using TiN is investigated for the first time. The effect of varying the shape parameters on the cutoff in the modes dispersion is studied. The trapezoidal shape waveguide that causes the most significant shift in the cutoff is selected and detailed dispersion analysis of its guided modes is performed. The effect of changing the plasmonic material on the dispersion curve key characteristics is also identified. Finally, the effect of shifting the cutoff on the enhanced transmission phenomena is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.