Abstract
This paper proposes a variational approach by minimizing the energy functional to compute the disparity from a given pair of consecutive images. The partial differential equation (PDE) is modeled from the energy function to address the minimization problem. We incorporate a distance regularization term in the PDE model to preserve the boundaries' discontinuities. The proposed PDE is numerically solved by a cellular neural network (CeNN) algorithm. This CeNN based scheme is stable and consistent. The effectiveness of the proposed algorithm is shown by a detailed experimental study along with its superiority over some of the existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.