Abstract

A learning procedure for CNN is presented and applied in order to find the parameters of networks approximating the dynamics of certain nonlinear systems which are characterized by partial differential equations (PDE). Our results show that - depending on the training pattern - solutions of various PDE can be approximated with high accuracy by a simple CNN structure. Results for two nonlinear PDE, Burgers' equation and the Korteweg-de Vries equation, are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.