Abstract

Silicon (Si) has become the most promising next-generation anode to replace commercial graphite for Li-ion batteries (LIBs) profiting from its large reversible capacity of 4,200 mA h g−1. However, its sluggish reaction kinetics and large volume effect need to be resolved. Herein, we prepare a ternary GaSiP solid solution with a disordered lattice by a facile mechanochemistry method. As anodes of LIBs, the GaSiP provides a reversible capacity of 1,527 mA h g−1 at 100 mA g−1 with an initial Coulombic efficiency (ICE) of 90.8% based on the reversible Li-storage mechanism integrated intercalation and subsequent conversion processes as confirmed by crystallography characterization and electrochemical measurements. Importantly, the GaSiP carbon composite presents a long cycling stability of maintaining 1,362 mA h g−1 after 50 cycles at 0.1 A g−1, and 75% capacity retention rate after 1,200 cycles at 2 A g−1, and a high-rate performance of remaining 440 mA h g−1 at 20 A g−1. Broadly, this work opens the door to develop ternary phosphides with disordered lattice and liquid metallic phase using for electrochemical energy conversion and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.