Abstract
Disordered and frustrated magnetization of different surface coated (Cr2O3, Co3O4, ZrO2, and SiO2) MnFe2O4nanoparticles have been studied using SQUID-magnetometry. Magnetic measurements, such as ZFC/FC and ac-susceptibility evidence surface spin-glass behavior. ZFC/FC curves were also compared with numerical simulation to get information about effective anisotropy constants. Frequency dependent ac susceptibility results were analyzed by using Arrhenius, Vogel Fulcher and dynamic scaling laws to further confirm the spin-glass behavior. It is observed that the strength of surface spins disorder and frustration strongly depends upon the type of the coating material. All these analyses signify that disordered and frustrated surface magnetization in MnFe2O4nanoparticles greatly depend on the type of the surface coating materials and are useful for controlling the nanoparticle’s magnetism for different practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.