Abstract

Magnetic properties of 6 nm maghemite nanoparticles (prepared by microwave plasma synthesis) have been studied by ac and dc magnetic measurements. Structural characterization includes x-ray diffraction and transmission electron microscopy. The temperature scans of zero field cooled/field cooled (ZFC/FC) magnetization measurements show a maximum at 75 K. The ZFC/FC data are fitted to the Brown-Néel relaxation model using uniaxial anisotropy and a log-normal size-distribution function to figure out the effective anisotropy constant Keff. Keff turns out to be larger than the anisotropy constant of bulk maghemite. Fitting of the ac susceptibility to an activated relaxation process according to the Arrhenius law provides unphysical values of the spin-flip time and activation energy. A power-law scaling shows a satisfactory fit to the ac susceptibility data and the dynamic critical exponent (zv ≈ 10) takes value between 4 and 12 which is typical for the spin-glass systems. The temperature dependence of coercivity and exchange bias shows a sharp increase toward low temperatures which is due to enhanced surface anisotropy. The source of this enhanced magnetic anisotropy comes from the disordered surface spins which get frozen at low temperatures. Memory effects and thermoremanent magnetization experiments also support the existence of spin-glass behaviour. All these magnetic measurements signify either magnetic blocking or surface spin-glass freezing at high and low temperatures, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call