Abstract

In this paper, we present the structural, electronic, magnetic and transport properties of a equiatomic quaternary alloy NbVTiAl. The absence of (111) and (200) peaks in X-ray diffraction (XRD) data confirms the A2-type structure. Magnetization measurements indicate a high Curie temperature and a negligibly small magnetic moment (∼10−3 μB/f.u.) These observations are indicative of fully compensated ferrimagnetism in the alloy. Temperature dependent resistivity indicate metallic nature. Ab-initio calculation of fully ordered NbVTiAl structure confirms a nearly half metallic behavior with a high spin polarization (∼90 %) and a net magnetic moment of 0.8 μB/f.u. (in complete contrast to the experimental observation). One of the main objective of the present paper is to resolve and explain the long-standing discrepancy between theoretical prediction and experimental observation of magnetization for V-based quaternary Heusler alloys, in general. To gain an in-depth understanding, we modeled various disordered states and its subsequent effect on the magnetic and electronic properties. The discrepancy is attributed to the A2 disorder present in the system, as confirmed by our XRD data. The presence of disorder also causes the emergence of finite states at the Fermi level, which impacts the spin polarization of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.