Abstract

Multiple functional ionic and electronic orders are observed in high temperature superconducting cuprates. The charge density wave order is one of them and it is spatially localized in different regions of the material. It is also known that the oxygen interstitials introduced by chemical intercalation self-organize in different oxygen rich regions corresponding with hole rich regions in the CuO2 layers left empty by the charge density wave order domains. However, what happens in between these two orders is not known, and neither there is a method to control this spatial separation. Here we demonstrate by using scanning nano x-ray diffraction, that dislocations or grain boundaries in the material can act as boundary between charge density wave and oxygen rich phases in a optimally doped high temperature superconductor. Dislocations can be used therefore to control the anti-correlation of the charge density wave order with the oxygen interstitials in specific portion of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.