Abstract

It has been previously observed that the impact surface of [100] shock-loaded lithium fluoride is a strong source of dislocations. These dislocations, on one side of the impact surface, are nearly all of the same sign and move in the same direction when the driving (impact) stress is maintained. This produces an excess of like-signed dislocations between the impact surface and the advancing planar shock front. It is shown that inclusion of dislocation transport effects in the equation for dislocation regeneration is required when surface sources are present. A derivation of the general expression of dislocation transport is presented along with some specific results for [100] loaded lithium fluoride. These results have important consequences regarding proper analysis of elastic precursor decay and rate-dependent plastic deformation in shock-loaded solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.