Abstract

The electron backscatter diffraction (EBSD) technique is used to investigate the dislocation structures formed after steady-state creep deformation of an Al-3.85%Mg alloy. This material is crept at two different stress levels, corresponding to the so-called power-law and power-law breakdown regimes. The results show that, regardless of the creep stress level, the strain tends to localize, leading to the formation of intragranular bands. The thickness of such bands is larger when the material is tested at loads corresponding to the power-law breakdown. This suggests enhanced diffusion by dislocation pipes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.