Abstract

We present the first measurement of the strain rate sensitivity of the ideal dislocation slip transmission through a coherent Σ3{111} copper twin boundary. For this purpose we have deformed 129 geometrically identical samples at different strain rates. The micron-sized samples are either single crystalline (87 pillars) or contain one vertical Σ3{111} twin boundary (42 pillars). The strain rate sensitivity of the ideal slip transmission event is 0.015 ± 0.009. This value is considerably lower than the strain rate sensitivity observed for nano-twinned bulk materials, which is addressed to multiple simultaneously activated deformation processes present in the latter case. The activation volume of the ideal slip transmission points towards a cross-slip like transmission process of dislocations through the twin boundary. Furthermore, the high number of geometrically identical samples is used to discuss the ability to identify the strength distribution function of micropillars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call