Abstract

A technology to reduce the dislocation density in GaN thin films by lateral overgrowth from trenches (LOFT) is reported. In LOFT, a GaN thin film was grown on sapphire substrate first, then trenches were formed into the thin film by etching. GaN material was regrown laterally from the trench sidewalls to form a continuous thin film. The average surface density of threading dislocations is reduced from 8×109/cm2 in the first GaN thin film to 6×107/cm2 in the regrown GaN thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.