Abstract

Molecular dynamics simulations are used to evaluate the primary interface dislocation sources and to estimate both the free enthalpy of activation and the critical emission stress associated with the interfacial dislocation emission mechanism. Simulations are performed on copper to study tensile failure of a planar Σ5 {2 1 0} 53.1° interface and an interface with the same misorientation that contains a ledge. Simulations reveal that grain boundary ledges are more favorable as dislocation sources than planar regions of the interface and that their role is not limited to that of simple dislocation donors. The parameters extracted from the simulations are utilized in a two-phase composite mesoscopic model for nanocrystalline deformation that includes the effects of both dislocation emission and dislocation absorption mechanisms. A self-consistent approach based on the Eshelby solution for grains as ellipsoidal inclusions is augmented by introduction of stress concentration in the constitutive law of the matrix phase to account for more realistic grain boundary effects. Model simulations suggest that stress concentration is required in the standard continuum theory to activate the coupled grain boundary dislocation emission and absorption mechanisms when activation energy of the dislocation source is determined from atomistic calculation on grain boundaries without consideration of impurities or other extrinsic defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.