Abstract
We investigated dislocation nucleation and defect formation underneath a spherical indenter which possesses atomic steps on its surface. Atomic-scale simulations of Cu (111) nanoindentation were performed. Our simulation results reveal that dislocations nucleate from surface ledges formed by atomic steps on indenter surfaces. We found that stepped indenters promote concurrent activation of three inclined {111} planes, which leads to an increased probability of forming threefold symmetric defects and punching prismatic loops along threefold symmetric directions. A new junction structure was observed and found to unzip during the formation of prismatic loops. The formation and destruction of defect structures can be explained using a conventional theory of dislocation reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.