Abstract

At the microscopic scale fast neutron irradiation brings about a high density of small point defect clusters in the form of dislocation loops and voids. And such radiation damage is of primary importance for materials used in nuclear energy production. In the present investigation emphasis is placed on the understanding of the mechanisms involved in the evolution of prismatic dislocation loops by glide in the presence of external free surfaces and those of the voids and in the interaction between dislocation loops and voids within irradiated thin films, so as to simulate in situ Transmission Electron Microscopy (TEM) images of dislocations, which is an indispensable tool for extracting information on radiation damage. By employing 3D dislocation dynamics based on isotropic elacticity and principle of superposition, the calculation results show that the image force is determined by the distance of the dislocation loop from the external and void surfaces and scales with the film thickness; the dislocation glide force is determined by the image stress as well as the loop–loop interaction stress which is in turn governed by the loop spacing. It is also shown that the presence of voids in the thin films has a strong influence on the behaviours of prismatic dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.