Abstract
We have systematically studied dislocation cross-slip in Al at zero temperature by atomistic simulations, focusing on the dependence of the transition paths and energy barriers on dislocation length and position. We find that for a short dislocation segment, the cross-slip follows the uniform Fleischer (FL) mechanism. For a longer dislocation segment, we have identified two different cross-slip mechanisms depending on the initial and final positions of the dislocation. If the initial and final positions are symmetric relative to the intersection of the primary and cross-slip planes, the dislocation cross-slips via the Friedel–Escaig (FE) mechanism. However, when the initial and final positions are asymmetric, the dislocation cross-slips via a combination of the FL and FE mechanisms. The leading partial folds over to the cross-slip plane first, forming a stair-rod dislocation at the intersection with which the trailing partial then merges via the FL mechanism. Afterwards, constrictions appear asymmetrically and move away from each other to complete the cross-slip via the FE mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.