Abstract
A new method is proposed for growing large-size crystals of monocrystalline silicon using a seed casting technique. The stress and dislocation distributions for this type of growth during crystallization were simulated. The results indicate that the order of dislocation density is not very large. If the cooling flux of the crystal growth is controlled to be small at the initial stage, and the annihilation and direction effects of dislocation in the Alexander and Haasen model are included, the real dislocation density could be considerably smaller than the calculated value. Therefore, the new growth method for monocrystalline silicon is promising for complete single crystal growth, effectively avoids polycrystalline nucleation, and has a moderate dislocation density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.