Abstract

The goal of the study was to evaluate the possibility of use of disintegrated excess sludge to enhance combined biological nutrient removal from wastewater. In the experiment lasting 295 days four runs were performed. Effectiveness of contaminants removal in sequencing batch reactor without and with applying sludge subjected previously to hydrodynamic disintegration at three energy density (ƐL) levels was analysed. It was shown that ƐL is a crucial parameters responsible for the characteristics of disintegrated sludge applied as a carbon source for biological nutrient removal. Using sludge disintegrated at 70 and 210 kJ/L the increase in effectiveness of N and P removal was noted, averagely by 16.1 % (N removal) and 70.3 % (P removal) at ƐL = 70 kJ/L and by 17.8 % and 63.1 % at ƐL = 210 kJ/L. On the contrary, use of sludge disintegrated at ƐL = 280 kJ/L caused decline in N removal by averagely 12.8 %, what was a consequence of nitrification failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.