Abstract

The effects of high concentrations of Hg (2+) (10 (-2) M and 10 (-3) M) were investigated on the ultrastructure and on the light-induced transformation of isolated prolamellar bodies (PLBs) of dark-grown wheat leaves. Our earlier work on wheat leaf homogenates ( , Plant Biology 6, 358 - 368) showed that, depending on the concentration, Hg (2+) reacts with protochlorophyllide, NADPH and the NADPH : protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) enzyme and induces disaggregation of the macrodomain structure of this latter. Spectroscopic analyses confirmed that 15 min incubation with 10 (-2) M Hg (2+) at 4 degrees Celsius completely inhibited the activity of POR also in isolated PLBs. Ultrastructural investigations revealed the loosening of the PLB structure in the Hg (2+)-treated sample, i.e., intensive vesicle formation on the surface of the PLB membranes. The hexagonal geometry of the inner lattice was not disturbed, however, the unit cell size significantly increased. The disruption of the PLB membranes upon irradiation was studied after 40 min incubation with 10 (-3) M Hg (2+) at 4 degrees Celsius and a subsequent irradiation for 40 min at 20 degrees Celsius. Equimolar concentrations (10 (-3) M) of NADPH and Hg (2+) were added to the samples 10 min prior or after the addition of Hg (2+). Our results suggest that Hg (2+) accelerates the disruption of the PLB membranes and that NADPH can only partially prevent this process. These membrane transformations were similar to those observed in the initial steps of the Shibata shift of control samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.