Abstract

Raw water from the Songhua River was treated by four types of coagulants, ferric chloride (FeCl3), aluminum sulfate (Al2(SO4)3), polyaluminum chloride (PACl) and composite polyaluminum (HPAC), in order to remove dissolved organic matter (DOM). Considering the disinfection byproduct (DBP) precursor treatability, DOM was divided into five chemical fractions based on resin adsorption. Trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP) were measured for each fraction. The results showed that hydrophobic acids (HoA), hydrophilic matter (HiM) and hydrophobic neutral (HoN) were the dominant fractions. Although both HoN and HoA were the main THM precursors, the contribution for THMFP changed after coagulation. Additionally, HoA and HiM were the main HAA precursors, while the contribution of HoN to HAAFP significantly increased after coagulation. HoM was more easily removed than HiM, no matter which coagulant was used, especially under enhanced coagulation conditions. DOC removal was highest for enhanced coagulation using FeCl3 while DBPFP was lowest using PACl. This could indicate that not all DOC fractions contained the precursors of DBPs. Reduction of THMFP and HAAFP by PACl under enhanced coagulation could reach 51% and 59% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.