Abstract
Jar-test experiments were conducted to study enhanced coagulation effectiveness in removal of disinfection by products (DBPs) from Zayandehrud River at Isfahan Province-the center part of Iran-in 2004. In this study, the removal of suspended and colloidal particles and natural organic matter (NOM) at various coagulant doses and coagulation pHs was assessed through raw and treated water measurements of turbidity, UV254 absorbance, TOC, and dissolved organic carbon (DOC). The trihalomethane formation potential (THMFP) was also determined by a mathematical relationship with TOC. Results indicated that NOM removal was a function of coagulant type, coagulant dose, and pH of coagulation. In general, TOC, DOC, and UV254 absorbance removal enhanced with increasing coagulant dose. However, further increases in coagulant dosage had little effect on disinfection by-products precursors removal. Ferric chloride was consistently more effective than alum in removing NOM. Coagulation pH was appeared to be a determining factor for maximum NOM removal and the removal of DBPs precursors by enhanced coagulation was significantly enhanced at pH 5.5 in comparison with initial pH of water. Furthermore, it is specified that preadjustment of pH with sulfuric acid reduced the coagulant dosage and thus, production of sludge. The reduction in THMFP was consistent with the trends observed for DBPs precursors removal data (i.e. UV254 and TOC data).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.