Abstract

Symmetries play an important role in fundamental physics. In gravity and field theories, particular attention has been paid to Weyl (or conformal) symmetry. However, once the theory contains a scalar field, conformal transformations of the metric can be considered a subclass of a more general type of transformation, so-called disformal transformation. Here, we investigate the implications of pure disformal symmetry in the Universe. We derive the form of general disformal invariant tensors from which we build the most general disformal invariant action. We argue that, in cosmology, disformal symmetry amounts to require that the lapse function is fully replaced by a (time-like) scalar field at the level of the action. We then show that disformal symmetry is in general an exactly equivalent formulation of general mimetic gravity. Lastly, we go beyond mimetic gravity and find that a particular class of invariance leads to seemingly Ostrogradski-like (with higher derivatives) Lagrangians, which are nevertheless absent of Ostrogradski ghosts in a cosmological background, despite having an additional degree of freedom. We also propose an application of our formalism to find new invertible disformal transformations, where the coefficient involves higher derivatives and curvature, further expanding the theory space of scalar-tensor theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.