Abstract

The shear rheology of soft particles systems becomes complex at large density because crowding effects may induce a glass transition for Brownian particles, or a jamming transition for non-Brownian systems. Here we successfully explore the hypothesis that the shear stress contributions from glass and jamming physics are `additive'. We show that the experimental flow curves measured in a large variety of soft materials (colloidal hard spheres, microgel suspensions, emulsions, aqueous foams) as well as numerical flow curves obtained for soft repulsive particles in both thermal and athermal limits are well described by a simple model assuming that glass and jamming rheologies contribute linearly to the shear stress, provided that the relevant scales for time and stress are correctly identified in both sectors. Our analysis confirms that the dynamics of colloidal hard spheres is uniquely controlled by glass physics while aqueous foams are only sensitive to jamming effects. We show that for micron-sized emulsions both contributions are needed to successfully account for the flow curves, which reveal distinct signatures of both phenomena. Finally, for two systems of soft microgel particles we show that the flow curves are representative of the glass transition of colloidal systems, and deduce that microgel particles are not well suited to studying the jamming transition experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.