Abstract

We characterize asymmetric growth of magnetic bubble domains in perpendicularly magnetized Co/Ni multi-layers grown on Pt$_x$Ir$_{1-x}$ seedlayers by application of perpendicular and in-plane magnetic fields. Using a refined model of domain wall creep that incorporates contributions from the anisotropic elastic energy, $\varepsilon$, and a chirality-dependent prefactor, $v_0$, we elucidate factors that govern the mobility of Dzyaloshinskii domain walls as a function of seedlayer composition. The interfacial Dzyaloshinskii-Moriya Interaction magnitude is found to decrease monotonically with $x_{Ir}$, which is independently confirmed by Brillouin light scattering (BLS). Moreover, the persistence of significant asymmetry in velocity curves across the full composition range supports previous assertions that a chirality-dependent attempt frequency akin to chiral damping could play a critical role in the observed trends. This work helps resolve fundamental questions about the factors governing Dzyaloshinskii DW creep and demonstrates varying Pt-Ir seedlayer composition as a method to tune DMI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call